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Extracting Keplerian signals from noisy data 

David Lawunmi 
Cavendish Laboratory. Madingley Road, Cambridge. CB3 Om. UK 

Received 3 June 1994, in final form 9 November 1994 

Abstract. A method for extracting d i a l  velocity signals pmduced by brawn dwarfs and extra 
solar planets is presented, and the implications of t h i s  analysis for the prospects of detecting 
extra solar nlanets and brown dwarfs are discussed. 

Currently the limiting sensitivity of measurements of stellar radial velocities deduced from 
the Doppler shift in their spectra is of the order of 5 ms-' [ I ] .  Jupiter-mass planets and 
brown dwarfs that are in binary systems with a primary companion that is visible from 
Earth (and where the primary star has a mass of the order of or less than one solar mass), 
are capable of producing perturbations in the radial velocity of their stellar companion 
that are larger than the current limiting sensitivity of spectral measurements of the radial 
velocity. In this article the relationship between the orbital dynamics of a binary system 
consisting of a visible primary star and a companion secondary object (that may be difficult 
or impracticable to observe directly), and the spectroscopically determined radial velocity 
of the primary star will be analysed. It is shown that valuable evidence about the nature of 
low mass secondary objects that are accompanying the primary star may be gleaned from 
empirical measurements of the radial velocity of the primary gathered over a fraction of the 
orbital period of the binary system. 

It may take the binary system several decades to complete one orbital cycle. Extracting 
unambiguous information about low-mass secondary components from an analysis of the 
radial velocity measurements of the primary star is expected to be difficult as velocity 
variations due to the atmospheric dynamics of the primary may have a similar order of 
magnitude to the reflex velocity variation induced on the primary star by the secondary 
object [21. 

An earlier study of the fractional orbit problem and its application to analysing the 
orbital dynamics of binary systems was undertaken by Monet 131; however, most of the 
methods for analysing radial velocity data that are currently being used to check for the 
presence of low-mass secondary objects rely on data being collected over one or more orbital 
cycles [2,4,5]. If a data analysis technique can provide information about the presence of a 
secondary object by using data from a fraction of an orbital cycle, it is potentially of great 
value as it could save several years of observing time. 

In addition to the analysis of the radial velocities of primary stars, a wide variety of 
other methods for detecting secondary objects in binary systems are also being implemented 
and developed. These include astrometric methods, gravitational microlensing, and direct 
observation, [1,2,6-91. 

The orbits of the primary star and the secondary object with respect to their barycentre 
were determined by analysing the dynamics of the binary system in terms of the two-body 
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problem [lo]. The radial velocity of the primary star with respect to the observer of the 
binary system, U', is given by the expressions [I  I ,  121, 

U* = K (ecos (3) + cos(f + 3)) + y 

p = G (m, + M') (14 
where m, is the mass of the secondary body; M* is the mass of primary star; a is the semi 
major axis of the secondary with respect to the primary star; e is the eccentricity of the 
similar orbits of the primary star and the secondary object with respect to their barycentre; 
f is the true anomaly; i is the inclination of the orbit; 3 is the argument of periastron; 
and y is the contribution to the radial velocity of the primary that results from the proper 
motion of the binary system. 

Information about the nature of the orbital motion of the primary star with respect to 
the barycentre of a binary system can be obtained by taking advantage of some of the 
mathematical properties of periodic orbital motion on an elliptical path. For the purposes 
of the mathematical approach adopted in this article. it is convenient to express the radial 
velocity of the primary star as 

V& = v; + v;m,, + VCmc (2) 

where the measured radial velocity has been split into three terms, the periodic contribution 
due to the reflex radial velocity due to the secondary object perturbing the primary object 
V& = K cos (f + G), a noise term and a constant term K e  cos (G) + y .  

The velocity VieB can be expressed as: 

VLa = cos (f) + 61 sin (SI + V,i,, + VGmt. (3) 

The limiting values of the true anomaly that define the data that is under analysis are 
represented by xfin < f < x-. The time interval between the data points was not 
uniform, in this study it was obtained by dividing the interval xmn < f < xmax into uniform 
sub-intervals and adding a random number that could take on any value between zero and 
90% of the size of a subinterval to the point at the beginning of the subinterval. The 
radial velocity noise was modelIed by a random number generator; for the analysis given 
in tables 1, 3 and 4 it has a normal probability distribution function given by: 

where U is the mean of the distribution and 6 is the standard deviation of the distribution. 
The noise in table 2 was modelled by a uniform probability distribution function. 

The contribution to the integral corresponding to al in equation (5) from a noisy set of 
data, for xfin < f < x-, is calculated and compared with the corresponding contribution 
from data that is free from noise, for a number of different values of xfin and x-, in 
tables 1-3. These estimates were obtained by utilizing the expression 

J: (u*(f)) - d f ) d f  
n 1 ! = I =  I 5 (xuL - xu) + [sin(2xur) - sin (2xU)l' 
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Table 1. The secondary object is a Jupiter-mass planet, the primary objea is a star with a mass 
equal to One solar mass, e = 0.1, T = 12 y"s, noise is normally distributed. b = IO ms-I+ 
d = I@ m s - l , B =  .* 6 '  

a1 a1 
Noisy data Noisefree data 
ms-1 m s-' 

48.29 14.78 
13.35 10.80 

-34.21 6.83 
-44.47 10.80 
-44.30 14.78 
11.30 10.80 
44.82 6.83 

7; 9n a* T 30.85 10.80 

Table 2. The secondary object is a Jupiter-mass planet, the primary object is a star with a mass 
equal to one solar mass, e = 0.1, T = 12 ye=, the noise is uniformly disbibuted bemeen 
-10 ms-' and 10 m5-I. 6 = H. 
ar a1 
Noisy data Noise-free data 
ms-' ms-I Xmim X m u  

17.74 14.78 0. B 
9.85 10.80 4. 9 

-19.83 6.83 f. x 
-13.91 10.80 $, zf 
-13.26 14.78 x ,  % 
10.95 10.80 F ,  4 
26.84 6.83 $, 2x 
15.27 10.80 q. % 

XUL and XLL are quasi-symmetric points about a point of odd symmetry of cos(f), and U& 
is the smallest value of the radial velocity in the data series. The expression defined as 
Z should be equal to the expansion coefficient al ,  when the contribution of the noise to 
the measured radial velocity is zero and the points XUL and XU are equidistant from the 
appropriate point of odd symmetry of cos(f). All of the integrals in tables 1, 2 and 3 used 
201 points inclusive of the two end points, xdn and xm. 

The reflex radial velocity data in this study was generated by using equations (la), (I&) 
and (IC). A graph illustrating the simulated data and the observations is shown in figure 1. 
Estimates of the coefficient a t  in equation (3) from a noisy set of data, for xmio < f < x-, 
are compared with the corresponding contribution from data that is free from noise, for a 
number of different sets of values of xdn and xm, in tables 1-3. 

In (3). 

al = K cos (G) 
bl = -K sin (3) 

The values of the standard deviation and the mean of the noise of the radial velocity 
data can have a significant effect on the quality of the information that can be extracted 
from the data. The effects of the mean were mitigated by subtracting the smallest value of 
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Table 3. The seeondav object is a brown dwarf, the primary object is a sku with a mass equal 
to one solar mass. The mass of the secondary object is 5% of the mass of the Sun, e = 0.1, 
T = 12 years: noise is distributed according to the n o d  probability distribution function, 
b =  lOms-',u = I05ms-' = 4.  
a1 a] 

ms-I ms-l %in. xm, 
Noisy data Noise-free data 

370.74 749.53 
550.64 548.08 %. 

4 '  & 
-356.61 346.63 %. n 
-187.57 548.08 F ,  9 
-86.97 749.53 x.  ?; 
548.59 548.08 a. a 
744.23 346.63 q. 2n 
357.46 548.08 'f, 2 

In I" 

Table 4. In this table the lhe integral I (see (7) is calculated and displayed The data set 
comprised of 201 radial velocity points obtained between the we momaly values f = and 
f = $. T h i i  t h e  integrals where the upper and the lower limits were almost symmetrical 
with respect to the vue anomaly point f = % were obtained. The minimum separation between 
the upper limit and the symmeuy point and the lower limit of the integral and lhe symmetry 
point was chosen to be 5 ,  Points closer Lo the symmetry point than this were not used in order 
that he inlegrat was taken over a sufficiently large sample of data points. The we value of 01 

corresponding to the input data is: (11 = 10.80 ms-I. me orbilal parameters of lhe secondary 
object and the noise distribution function are the 5ame as lhose in table I .  

01 estimate a, estimate 01 estimate ai estimate 
ms-I ms-l ms-' ms-1 

10.28 10.47 10.65 11.63 
9.88 9.06 10.91 11.47 
9.33 10.38 10.54 11.17 

1 I .63 11.40 10.68 11.33 
10.31 10.44 11.18 11.68 
11.11 10.43 11.06 12.10 
10.28 10.51 11.36 
11.48 9.94 11.72 
12.01 10.36 11.36 

the data sample from all of the data points before determining the values of the expansion 
coefficients a, and b, in equation (3). The discrepancy between the ideal case which 
corresponds to zero noise, and the contribution to a! and bl from noisy radial velocity data 
tends to increase with the standard deviation of the noisy data. 

If radial velocity data is symmetrically distributed about a point of odd symmetry of 
cos(f) then the noise free data series can be related to the component of the radial velocity 
that is due to the inRuence of the gravitational ataaction of the secondary object on the 
primary object. 

Similarly, when one has a noise-free data series that is symmetrically distributed about 
sin(f 1, 
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Figure 1. In this figure the differonce bemeen the radial velocity of the primary star and the 
smallest radial velocity of the primary in the dala series is illustrated. The circles illusmte the 
times at which the spectrum of the primary stlI was analysed. 

where 

Z = K cos (G) (9) 

and 

J =-Ksin(G) (10) 

and I& is the smallest velocity in the data set that is being analysed. 
The above expressions for Z and J are exact when the noise is zero and XUL and XU. are 

distributed symmetrically with respect to the relevant point of odd symmetry of cos(f) and 
sin(f) respectively. In practice the points XUL and x r ~ .  will generally not be equidistant from 
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the point of odd symmetry of the sin or the cos function and there will also be noise in the 
radial velocity data. If the pairs of quasi-symmetric points are close to being symmetrically 
distributed about a point of odd symmeny of the sin( f )  or cos(f), the expressions for I and 
J will generally yield a reasonable estimate of the integral obtained from noisy data, even 
in situations where the contribution from the noise to the radial velocity is much greater 
than that from the periodic perturbation in the radial velocity of the primary object with 
respect to the observer due to the secondary object, as illustrated in table 4 and figure 1. 
Generally, when analysing radial velocity data to ascertain if a secondary object is present, 
the observer will not have any a priori information about the orbital parameters of the 
secondary object. In order to overcome this problem, the orbital parameters can be treated 
as variable parameters and their values can be varied over a wide range of possible solution 
sets. This can be achieved by varying the values of the initial value of the true anomaly, 
fo, the orbital period of the system T and the orbital eccentricity of the system, e, and 
evaluating the integral Z or J corresponding to this set of parameters. The true anomaly 
corresponding to data points that were obtained after the initial point can be obtained hy 
utilising the values of fo, e and T in conjunction with the following equations 

where f is the hue anomaly and E is the eccentric anomaly; 

M = E - esin(E) (12) 

where M is the mean anomaly at time to. 

corresponds to the initial data point to is given by: 
The relationship between M the orbital period T, the time t ,  and the time that 

Generally the values of the integrals Z and J when evaluated over a number of pairs of 
quasi-symmetrical points distributed about a point of odd symmetry of cos( f) or sin(f) will 
have a wide range for a given potential solution set of the orbital parameters, (fo, e, T). 
When the solution set is close in value to that of the orbital parameters of the binary 
system the spread in the values of the integrals I or J will tend to be much smaller 
than the corresponding spread in the values of these integrals generated from a set of orbital 
parameters that are not close to those of the binary system. The candidate orbital parameters 
of the binary system can be checked for consistency by comparing these parameters with the 
solution set of orbital parameters that are obtained from radial velocity data, which includes 
observations subsequent to those that were initially used to determine the orbital parameters 
of the binary system. 

A noise analysis scheme can be implemented in order to determine the probability that 
any ‘Keplerian signature’ is due to a secondary companion to the primary star. This can 
be achieved by comparing the noise in the empirical radial velocity data with random noise 
generated from a probability distribution function that produces variations of a similar nature 
and magnitude to the empirical radial velocity noise, and then calculating the contribution 
to the coefficient a,, and or bl that results purely from the random noise, This method of 
noise analysis can provide a means of estimating the false alarm probability. If the values 
of ai, and or bi that are generated entirely by the noise are generally significantly smaller 
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than those that are obtained from an analysis of some radial velocity data, we have strong 
evidence in favour of a secondary object. This scheme is illustrated in figure 2 where 
the noise probability was generated from a normal distribution with a standard deviation of 
1Om s-l and a mean of 16 m s-*. The results from this noise analysis can be appreciated by 
comparing the coefficients obtained from the random noise with those in table 4. Analysis 
of the values of a1 produced by the random noise demonstrates that the probability of 
producing coefficients of the order of magnitude of those in table 4 from random noise is 
relatively small. 

I 1 
...... ...... 1 ... ............................. 

I .......... w 

60 

4 

10 

1 2 3 4  5 

..... 

-. . . . . .  

m 
6 

Figure 2. This histogram analyses the absolute magnitude of 337 data values of expansion 
coefficients generated from normally distributed noise with b = 10 ms-l, U = IO5 ms-l. 
It demonstrates the relative probabilities of the noise-ma!&g conhibutions to the firstarder 
expansion coefficients. Studies of the contribution of the noise to the first-order expansion 
coefficients using sets of data points that had a higher degree of symmetry in their guasi- 
symmetric points about the appropriate point of odd symmetry demonstrated that the probability 
of the noise mnaibufing signifioanlly to the Fmt-order expansla cmfficienls on be reduced by 
a significant faclor by increasing the degree of symmetry between the quasi-symmetric points 
The integrals that generated the expansion coefficients IZI  were obtained by using the lower limit. 
f = and the upper limit, f = $. In column (1) 0 6 IqI c 1; in column (2) I < le11 c 2: 
in columns (3H5) the range of values of the modulus of the coefhcient (2, can be determined by 
adding unity to both the upper and the lower limits of the preceding column. The final column, 
column (6). represents the values of Iail when lnil 2 5. 

In principle the argument of periastron, i3, can be determined when there is sufficient 
radial velocity data about a point of odd symmetry corresponding to only one of the 
expansion coefficients U ]  or bl. Another set of expansion coefficients can be obtained 
by utilising pairs of quasi-symmetric points about a point of odd symmetry of cos(f + j3). 
The angle j3 is chosen so that there is sufficient radial velocity data to undertake an analysis 
about points with a true anomaly given by f = (2n + I )?  - p .  

Initially one would generally expect points of odd symmetry of cos(f + j3) to be very 
close to those of either cos(f) or sin(f). However, as the size of the data series increases 
with time, one will ultimately be able to utilise a larger range of values of j3. The relationship 
between the first-order expansion coefficients that have f = (2n + 1)$ as a point of odd 
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symmetry, a,, and the coefficient determined by analysing quasi symmetric points about 
f = (2n + 1) % - B ,  aa,. is given by 

up, = a !  cos@) - bl sin(B) (14) 

hence determining the coefficient agl provides information that enables one to estimate 
bl and 6. The argument of periastron may be estimated by obtaining a set of first-order 
expansion coefficients about the point of odd symmetry, f = (2n + 1): - p. and a set of 
expansion coefficients about the point of odd symmetry f = (2n + 1);. and then calculating 
the range in argument of periastron that these two sets of coefficients yield. This process is 
illustrated in the histogram in figure 3. The modal according to this analysis is in the range 
$ 6 6 < g. The true value of 3 is 6 = 5. The noise in the radial velocity data generally 
has a stronger effect on the argument of periastron than it has on the expansion coefficients 
from which this angle is determined. This is probably due to the effects of combining the 
noise from both sets of data to obtain. Despite the noise, values of p can be determined 
that should allow one to make a reasonable estimate of the mass function with the above 
method; this is illustrated in table S. 

." " 

-I.I. 

....._..........I ........ 

...... . . .  

1 2 3 4 5 6 7 . 8  9 1 0 1 1  

Figure 3. This histogram analyses the argument of periastron generated from the expansion 
coefficients a j ~  and (I,. In column (1) OQ < 6 50; in column (2) So 6 ir < 10"; for the 
next eight columns the range in the values of can be determined by adding 5' to both the upper 
and the lower limits of the preceding column. The final column represents values of 6 when 
ir z 500. 

Evidence supporting the presence of a low-mass secondary object can be obtained by 
undertaking an analysis of high-precision radial velocity data. A fit for the eccentricity, 
the orbital period and fo can be obtained by varying these parameters and analysing the 
behaviour of the resulting contributions to the expansion coefficients. (In practice, when 
analysing the data from the various candidate orbits, the spread in the values of the expansion 
coefficients is expected to be relatively small when one has estimates of these parameters 
that are close to the true values.) One can also obtain orbital parameters by using additional 
data from later observational studies of the primary star. The sets of parameters derived 
by utilising this new data can be compared with orbital parameters obtained from data sets 
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Table 5. This table illusuales the orbital parameten that were deduced from the simulated 
radial velocity data The m e  orbital parameters are the same as those in table 4. Nole there 
am two possible values for the initial W e  momaly; both values are equidistant f" each 
of lhe lwo points of odd symmeuy of the cm(n function for 0 C f C 2p. The mass 
function, E(m) can be calculated by using the expression B(m) = m: <ms t AV)-* sin3 i = 
K 3  ( I  - c ' ) ~ ' ~  (T/(%G)).  The mass function was found to lie in the mge 4.82 x 10" Kg C 
8 ( m )  C 3.04 x I d '  Kg. The carrecl value of 8 ( m )  is: S(m) = 1.73 x Id' Kg. 
Period 12 * 0.5 years 
Argument of periastron f f 
Number of observations 201 
Orbital half amplitude. K 
Eccentricily O.lf0.1 
Initial W e  anomaly, fo 

11.99 * 2.79 ms-' 

9 f 0.032'. 4 * 0.032' 

based on earlier data and checked for consistency. By combining the information from the 
noise analysis and the subsequent motion of the primary star, a decision can be made about 
the likelihood that the primary star is accompanied by a low-mass secondary object. 

The mass of the secondary component of the binary system cannot be unambiguously 
determined merely by measuring the radial velocity of the primary star, as the angle of 
inclination of the orbit of the binary system is not divulged from the spectroscopic analysis 
of the radial velocity of the primary star. There are thus a range of masses that correspond 
to the radial velocity data of the primary object. This ambiguity may however be alleviated 
and the m a s  of the secondary companion can be constrained if it is possible to undertake 
a high resolution spectral analysis of the effects of the rotation of the primary star on its 
absorption line profiles [ 13-15]. 

In summary, it has been shown that it is feasible to use noisy radial velocity data from 
a fraction of an orbital cycle in order to check for the presence of a low-mass companion 
to a bright primary star.  The analysis presented in this article should be useful in the field 
of cosmogony and should also complement observational searches for brown dwarfs and 
extra solar planets, e.g. the high precision work of McMillan et al [16]. The techniques 
developed in this study should also be useful for analysing the effects of extra solar planets 
and brown dwarfs on the proper motion of the primary star [17]. 
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